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Considerable interest has been expressed in recent times to undertake a study of power- 
ful discharges, i.e., linear z pinches, in a high-density plasma. This interest is generated 
by the problem of developing high-intensity radiation sources and the utilization of z pinches 
in frozen-in deuterium fibers as a new and promising method to generate thermonuclear energy 
[I-4]. 

In order better to understand the physical processes taking place in the plasma of a 
z pinch, we must know the distribution of current, temperature, and density, all of these 
dependent on the dynamics of the plasma. Self-similar solutions describing the dynamics 
of the z pinch in approximation of nondissipative magnetohydrodynamics have been studied 
in [5-8]. Such an approximation is to be found in a relatively large current and in the 
low density of the plasma in a z pinch, when the velocity of motion and the temperature of 
the plasma are sufficiently large and the dissipative terms in the equations can be neglected 
to the extent that the magnetic Reynolds number is large (R m = uR/v m >> i). 

In the present paper we examine the self-similar solutions for the dynamics of a z pinch 
in a dense plasma in the case of relatively small current and low plasma temperature for 
the pinch. The passage of the electric current in the z pinch, with the current of rather 
great density, leads to the heating and disintegration of the plasma, and under the condi- 
tions of the experiments from [1-4] the velocity of the dispersion and the plasma temperature 
are not great, so that R m = 1.2"i0 -7 R2T-ZTeV3/2 ~ i. The dynamics of the plasma for the 
z pinch in this case is determined from the Joule heat, and in the MHD equations we must 
take into consideration terms with finite conductivity. At the same time, over a broad range 
of changes in the parameters the viscosity of the plasma is insignificant and we can neglect 
the corresponding terms in the equations of motion and heat transfer for the case in which 
Re = uR/v ~ i. 

i. Initial Equations. Self-Similar Variables. For a dense plasma we will use the 
equations of magnetohydrodynamics in the single-temperature approximation (T i = T e = T) [9]: 

.$F+On div (nu) = O; 

0B { clt} 
a---f = rot [u X B] - -  ~ ; 

o__u ~ [j x ot + (u.V) u = B] - - ~  VP; 

3 lOT ] j2 "llT - g - n - ~ y + ( u . V ) T  + P d i v u = - - d i v q + - j - +  e---if-" 

( i )  

(2) 

(3) 

(4) 

Here p = min is the density of the plasma; n is the density of the number of particles; u is 
the velocity; P = 2nT is the pressure; B is the magnetic field; q is the density of the heat 
flow; j = (c/4~) rot B is the density of the electric current; R andR T denote the force of 
friction and of heat; o = (e2n/me)Te is the conductivity of the plasma. 

Let us examine the case of a nonmagnetized plasma, corresponding to the conditions of 
the experiment conducted in [1-4]. Using the explicit form of the kinetic coefficients 
from [9] and comparing the dissipative terms in the right-hand side of Eqs. (2)-(4) to each 
other, we can demonstrate that all of the dissipative terms are small in comparison with 
the Joule dissipation in proportion to the smallness of the parameters: 
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o,% << t,  ~o,~,  << t (~ = 4 u P / B  ~ , . ,  t). (5)  

Neglecting the inertial terms in (3) for subsonic flows and, in view of (5), retaining 
in these equations 0nly those terms with finite conductivity, we can rewrite (1)-(4) in cy- 
lindrical coordinates: 

on t 0 (nru) = O; (6)  
o--f + -;- ~ 

oB o o ) (7) 
O'-'-t- + ~ (uB)  -= - ~  \ r Or (rB)  ; 

I B..~O (rB) + oP 
4~---~ Or -~- = 0; (8)  

- 7  "T; (ru) = ( rB)  3n --~ + u ~ -  4~r ~ k ~gr ' ( 9 ) 

where u ~ u r and B ~ B~ denote the radial component of velocity and the azimuthal magnetic 
field; Vm = c2/(4~~ is the magnetic viscosity. 

The velocity of the plasma particles and the magnetic field vanish at the axis, and 
where r = R(t) at the pinch boundary the density vanishes, while the magnetic field corre- 
sponds to a total current. The boundary conditions for system of equations (6)-(9) are thus 
as follows: u = 0, B = 0 with r = 0, n = 0; u = ~(t), B = (21(t))/(cR(t)) with r = R(t). 
We will introduce the self-similar coordinate $ = r/R(t) and write solution (6)-(9) in the 
form 

u(r, t) = ~ ( t ) L  n(r, t) = no~-~(t)nl(D, 

T(r, t) = To~-~u(t)Ta(~), B(r, t) = Bo~a(t)B~(~) ( 1 0 )  

[ a ( t )  = R ( t ) / R 0 ,  R 0 = R ( 0 )  i s  t h e  i n i t i a l  r a d i u s  o f  t h e  p i n c h ,  and  ~ and  ~ a r e  i n d i c e s  o f  
self-similarity]. 

Connecting the arbitrary dimensional constants by the relationship 16~n0T 0 = B02 and 
making the transition in (6)-(9) to the self-similar variables, we find that (6) is satisfied 
identically, while the separation of the variables $ and t in (8) requires satisfaction of 
the condition 

+• = 0 .  (il) 

With consideration of (ii), we find that Eq. (8) in self-similar variables assumes the form 

2 B 2 (12) d + BD + o. 
7 

Making the transition to the self-similar variables and separating the variables in 
(9), we-obtain 

(i___~32 z)~=~3x_1; (13) 

[-~-~(~BI) ] =l~nlTS,/~, (14) 

where 12 is the separation constant: the dot denotes differentiation with respect to time, 
measured in units of t o = R0//~(Vm(~ = ~m(t = 0, r = R0)). 

The separation of variables in the induction equation (7) leads to the equations 

+ i)i = + (15) 

d'--~d (T-S~21 -~-i -~d (~BI))__-- 2~ (~ + I) BI (16) 

($ is the separation constant, ~ = 12/~=). 

The common solution of (13) and (15) imposes the condition p = -i - K =-(4~ + 5)/ 
(2~ + 3) on the constants p and K and leads to a time dependence of the functions in the 
self-similar solution 
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The profiles of the self-similar variables ni($), Ti(~), Bi(g) can be found from the 
solution of the system of ordinary differential equations (12), (14), (16) with boundary 
conditions Ti(0) = ni(0) = i, Bi(0) = 0. 

Before we undertake the study of these solutions, let us take note of the fact that 
the possible self-similar solutions may represent the asymptote of the true motion of the 
plasma, provided that the time dependence of the current of the z pinch for such a solution 
is in agreement with the change in the current within the circuit, with an external current 
source for the z pinch. 

Taking into consideration the self-similar representation for the density of the elec- 
tric current, and namely: 

cB i d 
] (r, t) = 4~Ro- o ~.- i  ~ T~ (~B1)' 

we find the expression for the time dependence of the total current in the z pinch: 

R(t) 

I ( O  = 2re ] ( r ,  t ) r  dr = TeTl( t )B(Olim~B,(~) .  ( 1 8 )  
0 ~i 

According to (17) and (i0), it follows from (18) that when -I < r < 0 the self-similar solu- 
tions correspond to the disintegration of the plasma as the temperature is reduced and as 
the density reaches the stage of total-current diminution, while when -3/2 < ~ < -i the self- 
similar solutions will correspond to an increase in the total current and to the disintegra- 
tion of the plasma as density is reduced and temperature is raised. The solution correspon- 
ding to ~ > 0 and ~ < -3/2 may describe the self-similar compression regime as the total 
current, the temperature, and the density are increased. 

2. Self-Similar Solutions. For a qualitative study of the solutions of Eqs. (12), 
(14), (16) it is convenient to exclude the density ni(~). In the equations for B i and Ti, 
derived after elimination of ni, if we turn to the new variable D = g2 and the new func- 
tions Y = Ti-3/2(~), ~ = nZ/2Bi(~), we will have 

e y -- (~q-l)  t 
~-N- T~ T * = ~  (19) 

d [r(d,l , ,z, o. (20) 

The boundary conditions for Y and ~ are 

~(o)=o, y(o)=t, ~-~-(o)= k12, ( 2 1 )  

where, without limiting generality, we can assume that I > O. With consideration of (21), 
we will find the first integral of system (19), (20): 

(22) 

in particular, 

Y = r = i when ~ = --9~/3. 

With the aid of (22), eliminating Y from (19), we will have 

d 2 d~/  2~+:t d~b L 2 
a-C LCf ~ / an -- 

Equation (24) belongs to the class of equal degree. 
fashion. 

( 2 3 )  

4 

($ + I)~, = 0. (24) 

Its order can be reduced in standard 

Having introduced the new variable y : (%/2)~/(3~+2)D-(~+z)/(3~+2)~(N) and the new func- 
tion p(y) = dy/(dinD), from (24) when ~ ~ -2/3 and ~ ~ -1/2 we obtain a first-order differ- 
ential equation for p(y): 
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dp ~ ( ;q- i ) (2~+i)  4.$+2 . / ; + i  ~z;+l 
P - a T -  3;+z P i3 ;+zf  y + - - T - - g ~ z - ~ T ~ + ~ /  =0 .  (2~) 

iS. 

Conventional methods may be used to undertake a qualitative study of the behavior of the 
solutions for Eq. (25). The behavior of the integral curves of Eq. (25), as well as the 
form of the self-similar profiles depend significantly on the parameter ~. With r < -i and 

> 0 the solutions correspond to the compression or disintegration of the plasma, whose 
density does not vanish at finite distances from the axis, but the total mass and current 
diverge, i.e., such solutions have no direct physical meaning. For 0 > ~ > -i the solutions 
correspond to the dynamics of a plasma for a pinch with a sharp boundary. The asymptotic 
behavior of the self-similar profiles near the boundary of the pinch as $ + $0, where ~0 
is the boundary of the pinch, can be written in the form 

~ ~o - - ~ ( ~ o  ~ - U ) - ~ / ~ + ~ ,  n~ ~ (~o - ~)<~+~1<~;+~, 
T~ ~ ( L  - -  D - ~ ~  i~ ~ (~0 - -  ~)-~+~/~+~. 

For -1/2 < ~ < 0 the temperature and density of the electric current increase with ap- 
proach to the boundary of the pinch $ + ~0. For -2/3 < r < -1/2 the density of the current 
vanishes as $ + ~0; however, temperature increases with approach to the boundary. When 
-i < ~ < -2/3 both the temperature and the density of the electric current vanish as $ 
$0. Examples of self-similar profiles for ~ = -0.2 and -0.6 can be found in Figs. 1 and 

2, respectively. 

3. Analytical Solutions. With certain values of ~ the solution of system of equations 
(20) can be obtained in closed analytical form. For ~ = -2/3 from (19) and (23) we (19), 

find 

Y = I ,  d ~  + ~ = 0 .  (26)  
d~ 2 

The solution of (26) with boundary conditions (21) is ~ = ~J1(k~). Here J1(x) is the Bessel 
function, while the condition that the current density at the pinch boundary vanish when 
$ = $0 = 1 determines I = J0,1 = 2.405, where J0,1 is the first zero of the zeroth-order 

Bessel function. 

Thus, the self-similar solutions for the case in which ~ = -2/3 have the form 

oc(t) = R ( t ) / R o  - -  ( l  + 2n~t/to)'~/t I~(L t) = ToO~ -~z~, 

n(L t) = no~-~t.To(~D 13, B(L t) = BoO~-~/~Jl(~), 

] (~, t ) =  ~cB~ ~-1~/5Jo (~) ,  i (t) ~- cBot:lo] 1 (L) o~ -~/5 (t). 

This  s o l u t i o n  d e s c r i b e s  t h e  d i s i n t e g r a t i o n  o f  t h e  i s o t h e r m a l  p i n c h  as  t h e  t o t a l  c u r r e n t  drops  
in the circuit: I(t) - t -I/2 when t/t 0 >> i. 

For r = -i we find from Eqs. (22) and (19) that ~ = (i/2)~, Y = 1 - (I/2)~2~. Hence 

R(t) = Rod + 2~tlto) 2, n(~, t) = noa-2(l -- (I/2)L~Ds/~, 

o,~- 

2. 

n~ 

7" 

o,5 7,o ~ o 

Fig. i 

/ 
o,~ 1,o _~ 

Fig. 2 
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T(~, t) = To=-'(I -- (I12)~)-~13, R(L t) = Bo~-~13(I12)~, 

�9 "" - -  ~z ' (t) ,  I ( t ) - =  c~,RoBoot -1/2  (t) .  I t~, t )  = xcB~ -5"~ 1 
4=tR ~ -s 

At t h e  b o u n d a r y  o f  t h e  p i n c h  w i t h  ~ = ~0 = l t h e  p r e s s u r e  and t h e  d e n s i t y  o f  t h e  p lasma 
v a n i s h  when X = r  which  c o r r e s p o n d s  t o  t h e  d i s i n t e g r a t i o n  o f  t h e  p lasma f i l a m e n t  o f  t h e  
p i n c h  w i t h  a c u r r e n t  d e n s i t y  c o n s t a n t  t o  t h e  c r o s s  s e c t i o n ,  w h i l e  t h e  t o t a l  c u r r e n t  in  t h e  
c i r c u i t  d rops  and t he  p lasma i s  o v e r h e a t e d  n e a r  t h e  p i n c h  b o u n d a r y .  

For  ~ = - 1  t h e  s o l u t i o n  o f  Eqs.  (22)  and (19)  has  t h e  form o f  $ = 2 ~ q / ( 4  + X iq ) ,  Y = 
(1 + (1/4)X2T]) 2 and c o r r e s p o n d s  t o  a p i n c h  w i t h  a d i f f u s e d  b o u n d a r y ,  w h i l e  t h e  d i s i n t e g r a -  
t i o n  o f  t h e  p i n c h  o c c u r s  w i t h  a c o n s t a n t  t o t a l  c u r r e n t  

~(t) = (i ~- 2~t/to)~/~, 

n(L t) = nor162 + (t/4)X~gD -2/3, T(g, t) = To(t -f- (tI4)~.~D -4/3, 
B(~, t) = Bo~-x2~,g/(4 -t- 3,~g2), I(t)  = (c/~)RoBo = const. 

the value of X is determined by the magnitude of the total current flow- In the latter case, 
ing in the pinch. 
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